Thank you for purchasing your Under Current® system. Your system was manufactured and packed with pride at our facility in Fresno, California.

Since 2006, the team at Current Culture H2O® has been dedicated to Cultivating Hydroponic Evolution. We uphold this mission by developing innovative and relevant products for growers worldwide. The Under Current® is just one example of our dedication and commitment to quality.

While using the Under Current® you will enjoy the benefits of increased efficiency, reduced maintenance and larger overall yields... just to name a few.

Your comments are important to us because they help us provide the best service in the industry. So please don’t hesitate to drop us a line via phone, email, web or social media.

Again, thank you for your purchase.

PROVEN PRODUCTION SYSTEM

Cultured Solutions® premium plant nutrients are clean, pH stable, highly soluble and offer Under Current® growers the right mix of highly chelated minerals. When used in the Under Current® this potent combination is the foundation of our “Proven Production System.” No other hydroponic system and nutrient line work together so harmoniously to provide the prolific results afforded by Cultured Solutions® used in tandem with our unique Under Current® water culture systems.

Utilized in high productivity CEA (controlled environment agriculture) applications around the globe, this powerful combination offers growers a “Proven Production System” for cultivating food, fiber and medicine crops.

GROWER SUPPORT

We want every Under Current® grower to experience outstanding results and huge yields. Your success is our success!

We have a unique team of seasoned growers and problem solvers with years of experience in hydroponics and traditional growing techniques. We offer expert grower support and will do our very best to troubleshoot your issues, big or small.

If you have any questions concerning our products or need help with your grow, please contact our Tech Support department in one of the following ways:

Phone: Give us a call @ (559) 266-4769 Monday – Friday 8am–5pm PST
Online: Fill out our Tech Support form @ http://cch2o.com/tech-support/
Email: Send us an email describing your issue tech@cch2o.com
<table>
<thead>
<tr>
<th>PAGE</th>
<th>UN-PACKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td>Parts Overview</td>
</tr>
<tr>
<td>4</td>
<td>Accessories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>ASSEMBLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-27</td>
<td>Assembly Instructions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>RESERVOIR AND CHILLER INSTALLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Top-Off Reservoir Installation</td>
</tr>
<tr>
<td>30</td>
<td>Water Chiller Installation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>SYSTEM OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Filling the System, pH Balancing, Transplanting into the System</td>
</tr>
<tr>
<td>32</td>
<td>Draining the System, Cleaning the System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>BULKHEAD INSTALLATION/BONELESS CUT CHART</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Bulkhead Installation Instructions</td>
</tr>
<tr>
<td>34</td>
<td>Boneless Manifolds Cut Chart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>CCH2O RECOMMENDATIONS & FAQ’S</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>General Recommendations</td>
</tr>
<tr>
<td>36-37</td>
<td>Frequently Asked Questions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PAGE</th>
<th>WARRANTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Current Culture H2O Limited 2-Year Warranty</td>
</tr>
</tbody>
</table>
Not all parts shown are included with every system. Reference the Pull Sheet included with your system for a full parts list.
1. Unbox. Lay out all components for easy identification. Do not open any bagged kits until you reach the appropriate step.

2. Layout GROWTH MODULES in chosen pattern, with EPICENTER at one end.

 a. Under Current (UC): Two Rows
 b. Under Current Evolution (UCE): Three Rows
 c. Under Current Double Barrel (UCDB): Four Rows
3. Unscrew the BULKHEAD NUT from each BULKHEAD BODY on all MANIFOLDS and JOINTS. Install the flat rubber Gasket to MAIN BULKHEAD BODY by pressing it all the way down. This will seal against the outside of the GROWTH MODULE.

NOTE:
Large O-rings are no longer included for the UC SPIN TIGHT BULKHEAD NUT.
4. Assemble DELIVERY/RETURN MANIFOLDS
**Only on Evolution and Double Barrel Systems.

For larger Under Current® systems the DELIVERY/RETURN MANIFOLDS will arrive in two (Evolution) or three (Double Barrel) sections.

a. Fully seat the pipe into the female tee socket.

b. Loosen the small clamp on the rubber sleeve.

c. Slide sleeve over to fully cover socket.

d. Tighten clamp screws on both sides of rubber sleeve.

CAUTION:
Do NOT use PVC/ABS glue at these unions. Using PVC/ABS glue will VOID the warranty on your DELIVERY/RETURN MANIFOLDS. It will also make cleaning and disassembly of your DELIVERY/RETURN MANIFOLDS very difficult.

**BONELESS SYSTEMS:
For BONELESS Systems see Bulkhead Installation and Boneless Sizing Chart on Page 33-34.
5. Install DELIVERY MANIFOLD into EPICENTER.

 a. Insert the center Bulkhead Body of the DELIVERY MANIFOLD into the EPICENTER, seat the bulkhead in the hole so that the gasket is flat and tight against the outside of the module wall centered in the hole.

 b. Install the Bulkhead Nut on the inside of the EPICENTER, hand-tighten until a good seal is achieved. Visually inspect the connection for gaps, if you see any gaps loosen and re-seat the Main Bulkhead Body.

CCH2O TIP:
The included BULKHEAD WRENCH is reversible and works on both 2 and 3” BULKHEADS.

CAUTION:
Use the included BULKHEAD WRENCH for final 1/4 - 1/2 turn ONLY. DO NOT OVER TIGHTEN.
6. Connect first row of GROWTH MODULES to DELIVERY MANIFOLD.

 a. Insert the Bulkhead Body of the DELIVERY MANIFOLD into the first row of GROWTH MODULES, seat the bulkhead in the hole so that the gasket is flat and tight against the outside of the module wall centered in the hole.

 b. Place Bulkhead Nut on male threads and begin to hand tighten.

CAUTION:
Use the included BULKHEAD WRENCH for final 1/4 - 1/2 turn ONLY. DO NOT OVER TIGHTEN.
7. Connect remaining GROWTH MODULES with JOINTS.

CAUTION:
Use the included BULKHEAD WRENCH for final 1/4 - 1/2 turn ONLY. DO NOT OVER TIGHTEN.
8. Assemble INLINE FILTER KIT(S) and install INLINE FILTER(S) on RETURN MANIFOLD(S).

 a. Use included TEFLO N TAPE for all connections.

 b. Thread 3/4” BARB X 3/4” FPT to 3/4” COUPLER. Thread 3/4” COUPLER to IN-LINE FILTER. Thread IN-LINE FILTER to 3/4” BALL VALVE. Thread entire IN-LINE FILTER assembly to RETURN MANIFOLD nipple.

 CAUTION:
 Orient the IN-LINE FILTER with the cap facing towards the EPICENTER. Flow direction is shown with an ARROW on the side of the IN-LINE FILTER.

 c. *For Evolution and Double Barrel Models repeat these steps for the second IN-LINE FILTER.

 d. Open IN-LINE FILTER and inspect. If Green Plastic flow diverter is installed, remove and discard. Make sure IN-LINE FILTER housing and threaded cap are tightened completely.
9. Install RETURN MANIFOLD(S) to last row of GROWTH MODULES.

a. * For all Double Barrel Models repeat this step for the second RETURN MANIFOLD.

CAUTION:
Use the included BULKHEAD WRENCH for final 1/4 - 1/2 turn ONLY. DO NOT OVER TIGHTEN.

NOTE:
For 13 Gallon Systems place MANIFOLD CRUTCH(S) under RETURN/DELIVERY MANIFOLD pipe at all corners.

10. Install BULKHEAD FILTERS into RETURN MANIFOLD BULKHEADS in last row of modules.
11. Locate RETURN PUMP and remove from box. **Discard stock filter included with RETURN PUMP.**

12. Locate RETURN PUMP FITTING KIT and select the proper fittings for your RETURN PUMP. Use the chart above.

 a. Wrap RETURN PUMP INLET with TEFLOM TAPE and screw 3/4” barbed fitting into RETURN PUMP.

 CAUTION:
 Do not excessively tape or over-tighten the threaded nipple, this may cause the inlet housing to crack and break.

 b. Wrap pump outlet with TEFLOM TAPE, screw barbed female fitting from RETURN PUMP FITTING KIT onto threaded pump outlet.

 c. Attach 3/4” hose to barbed outlet fitting.
13. Install RETURN PUMP DIFFUSER (included in EPICENTER KIT) into the upper EPICENTER UNISEAL by pulling the tee off then replacing once completed.

14. Connect 3/4” hose from pump outlet to a 3/4” barb on RETURN PUMP DIFFUSER.
15. Install \(\frac{3}{4} \)" RETURN HOSE between RETURN PUMP INLET and IN-LINE FILTER barb. Cut to length with scissors. Avoid kinking or sharp right angles as these will restrict flow.

a. For 8/13 Gallon EVOLUTION and DOUBLE BARREL Systems the RETURN PUMP will pull from two IN-LINE FILTERS. Install EVO SPLITTER on RETURN PUMP INLET (Included in RETURN PUMP FITTING KIT). Cut RETURN HOSE in two relatively equal lengths.
16. Locate AIR STONE KIT, remove ¼” Grommets. Insert ¼” Grommets into air inlet (small hole) near the upper lip of the GROWTH MODULE. Repeat for all GROWTH MODULES.

17. Remove AIR STONES from packaging and set in the bottom of the GROWTH MODULES.
Assembly Instructions

Air Pump & Air Manifold Specifications

Air Pump Size(s) (LPM)
Denotes the size in Liters Per Minute (LPM) of the air pump(s) included with the system. **When more than one pump is included [EPI+xx, xx] denotes the number of modules each air pump feeds to.**

<table>
<thead>
<tr>
<th>UNDER CURRENT</th>
<th>UC4</th>
<th>UC6</th>
<th>UC8</th>
<th>UC12</th>
<th>UC16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>40</td>
<td>60</td>
<td>50</td>
<td>80</td>
<td>(1) (30, 1) (89)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>EPI HOSE+, SPLIT 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT EVOLUTION</th>
<th>UCE9</th>
<th>UCE12</th>
<th>UCE18</th>
<th>UCE24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>60</td>
<td>80</td>
<td>2 (60) [EPI+10, 14]</td>
<td>(1) (80) (1) (80) (EPI+10, 14)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>EPI HOSE+, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT DOUBLEB</th>
<th>UCD16</th>
<th>UCE24</th>
<th>UCD24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>(1) (30, (1) (30)</td>
<td>(1) (30, (1) (30)</td>
<td>(1) (80) (1) (80) (EPI+10, 14)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>EPI HOSE+, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT XL</th>
<th>UC4XL</th>
<th>UC6XL</th>
<th>UC8XL</th>
<th>UC12XL</th>
<th>UC16XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>40</td>
<td>60</td>
<td>50</td>
<td>80</td>
<td>(1) (30, 1) (89)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>EPI HOSE+, SPLIT 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT EVOLUTION</th>
<th>UCE9XL</th>
<th>UCE11XL</th>
<th>UCE18XL</th>
<th>UCE24XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>60</td>
<td>80</td>
<td>2 (60) [EPI+10, 14]</td>
<td>(1) (30, (1) (30)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>EPI HOSE+, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT DOUBLEB</th>
<th>UCD16XL</th>
<th>UCD24XL</th>
<th>UCD32XL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>(1) (30, (1) (30)</td>
<td>(1) (30, (1) (30)</td>
<td>(1) (80) (1) (80) (EPI+10, 14)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>EPI HOSE+, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
<td>MULTI SPLITTER, SPLIT 24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT XL13</th>
<th>UC4XL13</th>
<th>UC6XL13</th>
<th>UC8XL13</th>
<th>UC12XL13</th>
<th>UC16XL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>(1) (30, 1) (100)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>EPI HOSE+, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT EVOLUTION</th>
<th>UCE9XL13</th>
<th>UCE12XL13</th>
<th>UCE18XL13</th>
<th>UCE24XL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>100</td>
<td>(1) (30, (1) (100)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>EPI HOSE+, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER (3) SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT DOUBLEB</th>
<th>UCD16XL13</th>
<th>UCD24XL13</th>
<th>UCD32XL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>(1) (80, (1) (80) (EPI+8, 10)</td>
<td>(1) (80, (1) (80) (EPI+8, 10)</td>
<td>(1) (80, (1) (80) (EPI+8, 10)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT XL13</th>
<th>UC4XXL13</th>
<th>UC6XXL13</th>
<th>UC8XXL13</th>
<th>UC12XXL13</th>
<th>UC16XXL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>(1) (30, 1) (100)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>MULTI SPLITTER</td>
<td>EPI HOSE+, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT EVOLUTION</th>
<th>UCE9XXL13</th>
<th>UCE12XXL13</th>
<th>UCE18XXL13</th>
<th>UCE24XXL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>100</td>
<td>(1) (30, (1) (100)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>EPI HOSE+, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER (3) SPLIT 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNDER CURRENT DOUBLEB</th>
<th>UCD16XXL13</th>
<th>UCD24XXL13</th>
<th>UCD32XXL13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Pump Size(s) (LPM)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
<td>(1) (100, (1) (100) (EPI+8, 10)</td>
</tr>
<tr>
<td>Air Manifold(s)</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
<td>MULTI SPLITTER, SPLIT 12</td>
</tr>
</tbody>
</table>
18. Assemble AIR PUMP MANIFOLD(S).

Each Under Current® model includes specific air pump(s) and air manifold(s). Use the chart at left to determine which pump(s) and manifold(s) came with your system. Depending on which model you purchased your air delivery system will be set-up with one or more of the four AIR MANIFOLDS above. Reference the CAD drawing included with your system for recommended AIR PUMP/MANIFOLD layout. The MULTISPLITTER and SPLIT 24 require assembly. See next page for assembly instructions.
MULTISPLITTER Assembly

ADAPTER TEE KIT:
- Install 36” x 3/4” hose onto 3/4” barbed tee.
- Install 3.5” x 3/4” hose onto 3/4” barbed tee.
- Use clip-clamps at both connections.

SPLIT 12:
- Insert chrome air manifold into 36” x 3/4” hose.
- Use clip-clamp at hose connection.
- Install complete SPLIT 12 onto 3/4” barbed tee.
- Use clip-clamp at hose connection.
- Install EPI HOSE+ onto 3.5 x 3/4” hose.
- Attach MULTISPLITTER to AIR PUMP and place at center of system.

Connect smaller hose to quick-connect fitting on EPICENTER.
SPLIT 24 Assembly

ADAPTER TEE KIT:
- Install 36” x 3/4” hose onto 3/4” barbed tee.
- Use clip-clamp at hose connection.

SPLIT 12:
- Insert chrome air manifold into 36” x 3/4” hose.
- Use clip-clamp at hose connection.
- Repeat for second SPLIT 12.
- Install complete SPLIT 12 onto 3/4” barbed tee.
- Repeat for second SPLIT 12. Use clip-clamps at each hose connection.
- Attach SPLIT 24 to AIR PUMP and place at center of system.
19. Remove AIR PUMP(S) from box and elevate AIR PUMP(S) off the ground. Reference CAD drawing included with system for recommended AIR PUMP locations.

20. Attach 3/4” hose from AIR PUMP MANIFOLD(S) directly to corresponding AIR PUMP(S) outlet. Use the chart on page 17 to determine which pump(s) and manifold(s) came with your system. Use provided click clamps to secure hose to pump outlet. **DO NOT use the brass nipple included with pump.

CCH20 TIP:
When using high concentrations of CO2 we recommend placing AIR PUMP(S) outside of the grow space.
21. Open roll of AIR HOSE. Insert AIR HOSE through Grommet on GROWTH MODULE leaving 12-18” inside the GROWTH MODULE.

22. Attach the AIR HOSE to the barbed fitting on the AIR STONE.

CCH20 TIP:
Wet the barb fitting to make insertion easier.

23. Once AIR HOSE is attached, place AIR STONE centered in GROWTH MODULE base.
24. Route AIR HOSE from GROWTH MODULE to AIR PUMP MANIFOLD. Cut AIR HOSE and attach to the first outlet of the chrome air diffuser on AIR PUMP MANIFOLD. Repeat for every GROWTH MODULE.

CCH20 TIP:
For smaller systems not all outlets on the chrome air diffuser will be utilized, CLOSE unused valves.

25. Attach LIDS to each GROWTH MODULE, install PORT HOLE COVER(S) on each LID.
26. Install NET POTS in each LID.

27. Install DRAIN VALVE into lower Uniseal on EPICENTER.

CCH2O TIP:
Make sure DRAIN VALVE is bottomed out in UNISEAL. Make sure valve is closed.
28. Install FLOAT VALVE in upper EPICENTER Lip through pre-drilled hole with rubber washer inside EPICENTER. Orient FLOAT VALVE so that it can adjust down. Secure with plastic nut, tighten nut down completely to ensure a good seal.

CCH2O TIP:
Make sure FLOAT VALVE is oriented so that it adjusts downward. Tighten nut to lock in place.

29. Apply TEFLON TAPE to threaded input on FLOAT VALVE. Screw on FLOAT VALVE QUICK CONNECT.
30. Install EPICENTER LID on EPICENTER.

31. Inspect all system connections. Ensure that bulkhead gaskets are flush against module wall with NO gaps.

CAUTION:
Use the included BULKHEAD WRENCH for final 1/4 - 1/2 turn ONLY. DO NOT OVER TIGHTEN.
32. Test fill system to just above BULKHEADS, check for leaks.

Run return pump for 1 hour, re-check for leaks.

Adjust and tighten BULKHEADS as necessary.

If a leak is discovered call CCH2O @ 559-266-4769 for support.
Replacement Items

Replacement parts are available through all CCH2O Authorized Dealers. These items are not covered under our Limited 2-year Warranty and should be replaced regularly to maintain system performance and cleanliness. Most items can be cleaned and re-used with each successful run. If any items become damaged or you are unable to clean them sufficiently they should be replaced.

- **Net Pots** – Net pots should be replaced as needed. Net pots can be cleaned and re-used in most cases. If net pots become damaged or are unable to properly support plants they should be replaced.
- **Air Stones** – Air Stones should be replaced with each full run. Air Stones can clog or harbor bacteria and pathogens if not cleaned properly between runs. Replacing the Air Stones will allow for maximum aeration with the least back pressure.
- **Air Hose** – Air hose should be replaced as needed. Replace air hose if lines become kinked or damaged and air levels start to diminish.
- **Return Hose** - Return hose should be replaced as needed. Return hose can harbor bacteria and pathogens if not cleaned properly between runs. Replace return hose if lines become kinked or damaged and flow levels start to diminish.

System Disposal & Recyclable Items

Each component of the Under Current system has been chosen for longevity and durability in adverse growing environments. Though we offer a Limited 2-year Warranty, most of your systems components have been optimized for a much longer life. In our pursuit of a fully recyclable system we’ve worked hard to source parts that are made from re-usable plastics. In the event you plan on disposing of your systems components please use the following information to do so responsibly:

- **Modules** – Made from food grade HDPE. Can be recycled.
- **Lids, Net Pots, Bulkheads** – Made from Recycled ABS. Can be recycled.
- **Joints** - Made from virgin ABS. Can be recycled.
- **Manifolds** – Bulkheads and straight pipe are ABS and can be recycled. Elbows and tees are PVC and can be recycled but only through specialty recycler.
- **Air Hose** - Made from LDPE. Can be recycled.
- **Return Hose** - Made from Vinyl/PVC. Can be recycled but only through specialty recycler.
CCH2O TIP:
A top-off reservoir is used to maintain consistent system volume. The top-off reservoir also helps to keep water chemistry stable. Fluctuations in pH and EC can have a negative effect on plant health.

The Top-off reservoir will supply solution via gravity to the float valve in the Epicenter (control module). When operated properly, the top-off reservoir should be balanced to be the same or slightly higher as the nutrient solution in the system.

Reservoir Installation

1. Attach a top-off reservoir to the FLOAT VALVE using the RESERVOIR ADAPTER KIT.

 a. Drill 1-1/4” hole near base of desired reservoir, install UNISEAL and RESERVOIR ADAPTER. Connect RESERVOIR ADAPTER to FLOAT VALVE QUICK CONNECT with RESERVOIR HOSE.

 b. Reservoir should be elevated above EPICENTER.

 c. RESERVOIR HOSE can be lengthened to place reservoir further away from EPICENTER.
Water Chiller Installation

The Under Current® can easily be adapted to a water chiller in one of the following ways:

1. Remove the center section of the RETURN PUMP MANIFOLD, attach 3/4” hose (not included) from the output barb on the RETURN PUMP to the chiller inlet. Attach 3/4” hose (not included) from the chiller outlet back to the inlet barb on the RETURN PUMP DIFFUSER.

2. For cooling multiple Under Current® systems with one large chiller you can use the Cool Coil® from Surna (www.surna.com). One Cool Coil® is needed for each system/EPICENTER.

Contact Surna for more information.
Filling the System with Water and Nutrients (Without Plants in System)

1. Adjust FLOAT VALVE to desired water level.

2. Be sure to use only the purest water possible, Reverse Osmosis/ UV Sterilized is best.

3. Begin filling the system to recommended level. See illustration below.
 a. BARE ROOT: Adjust system water level to top of root crown.
 b. ROCKWOOL: If using rockwool cutting adjust water level to just below rockwool cube.

4. Once filled, plug in AIR PUMP(S) and RETURN PUMP.

5. Add desired nutrient to EPICENTER.

6. Depending on size of transplants adjust your nutrient strength between 100ppm/TDS or 0.2 EC.

pH Balancing (Without Plants in System)

1. Add desired pH adjuster to EPICENTER.

3. Once solution is balanced, introduce plants.

Introducing Plants into the Under Current

1. Rinse grow rocks/stones thoroughly before use.

2. Rest bare root seedling/cutting on planting deck, drape exposed roots over planting deck towards the bottom of the NET POT.

3. Gently fill around the seedling/cutting roots up to about 1“ from the top lip of NET POT.

4. Place NET POT into the LID on top of each GROWTH MODULE.
Draining the System

Draining the system can be done in two ways:

1. Turn off RETURN PUMP. Attach GARDEN HOSE DRAIN ADAPTER to the female side of a garden hose. Remove the tee from the RETURN PUMP DIFFUSER inside the EPICENTER and attach the GARDEN HOSE DRAIN ADAPTER. Turn RETURN PUMP on. Monitor water level as system drains to not let RETURN PUMP run dry.
 a. This will drain system to within 1”. Top off system with fresh water while draining to dilute remaining solution.

2. Remove cap from DRAIN VALVE. Attach female side of garden hose to DRAIN VALVE. Run garden hose to desired location (Preferably a lower elevation than the DRAIN VALVE). Open DRAIN VALVE.
 a. This will drain system to within 1”. Top off system with fresh water while draining to dilute remaining solution.

3. To drain the system completely use a wet/dry vacuum in each module.

Cleaning the System (Without Plants in System)

1. Pull out root mass and discard AQUA-PORE DIFFUSERS.

2. Drain the system completely. Remove any remaining water and debris with a wet/dry vacuum.

3. Wipe down air hose, net pots and lids with sterilizing solution (Physan 20) on a green pad or wash cloth.

4. Fill the system with tap water and sterilizing solution (Physan 20) to the top of the buckets, run for minimum 4-6 hrs.

5. Scrub inside of modules with green pad and inside joints with bottle brush.

6. Rinse out the system with a hose while draining till drain water is clear.

7. Drain remaining solution down as far down as possible.

8. Remove remaining water with wet/dry vacuum or sump pump.

9. Wipe dry with a towel.

10. Let dry fully under HID lights to aid in sterilizing.
UC Spin-Tight Bulkhead - Assembly and Installation Recommendations
Thank you for purchasing our UC Spin Tight Bulkheads. To ensure your bulkheads function properly, follow the instructions below for installation.
In the event you have a question, please contact CCH2O Tech Support @ 559-266-4769 ex.2 to leave a message or email us at tech@cch2o.com

***NOTE: Take extra precautions and educate yourself when working with the tools and supplies necessary to bond and plumb plastic and bulkheads correctly. Consult with an online plumbing tutorial if further insight is necessary on the specifics of cutting and fitting pipe.

DRILLING
Be certain to take great care in drilling your holes! An improperly drilled hole will result in a poor seal and leakage. When drilling holes in containers to accept UC Spin Tight Bulkheads, we recommended drilling the following sizes:

- 2” Bulkhead = 2-7/8” Hole
- 3” Bulkhead = 3-7/8” Hole

GLUING
UC Spin Tight Bulkheads are made of ABS plastic and designed with one male threaded connection (which enters hole in module) and one socket side which is designed to accept 2” or 3” schedule 40 PVC. To make this pipe to bulkhead connection, we recommend the appropriate glue be used relative to the pipe material being installed.

- ABS to PVC: If connecting to PVC use glue suitable for bonding ABS to PVC. We recommend WELD ON ABS/PVC GLUE 794.
- ABS to ABS: If connecting to ABS use glue suitable for bonding ABS to ABS. We recommend WELD ON ABS GLUE 773.

If these glues are not available, use whatever comparable substitute you can source.

INSTALLATION
Factors such as hole distortion, un-level floors and inattention to detail can all play a roll bulkheads not functioning properly. For best results be cautious, take your time and use care when installing UC Spin Tight Bulkheads. Always consult a professional if necessary.

***NOTE: Do NOT use and lubricants or adhesives on the UC Spin Tight Bulkhead during the installation process.

1) Press flat gasket down to fully seat and install on flat flange on the outside of the bulkhead body. Be certain the gasket is fitted onto the flange as improper fitting will lead to leaks.

2) Insert male threaded side of bulkhead through the hole in your container and press the fitted gasket firmly against the side wall of container. Visually inspect for gaps.

3) Slip Aqua-Pore Anchor over the male threaded section of the Bulkhead Body on the inside of the Growth Module with the 2 prongs facing downward.

4) While holding the Aqua-Pore Anchor in the downward position with one hand, place Bulkhead Nut on male threads and begin to hand tighten.

5) Once Bulkhead Nut is hand tightened, check to see Aqua-Pore Anchor is oriented correctly with 2 prongs facing downward. Adjust as needed for proper placement. Visually inspect both sides of the container for gaps.

6) Once all bulkheads are installed using steps 1-5, follow up by tightening nuts with supplied bulkhead wrench until firmly secured. Do not over tighten as this may lead to leakage.

7) Once properly installed you can now begin to fill your containers with fluid to check for leaks. For initial inspection, we recommend filling to just above the top of bulkhead and let stand for a half hour before continuing inspection. If a leak is discovered, you can use the bulkhead wrench to tighten further.

8) If additional tightening does not remedy seal it may be necessary to repeat steps 1-7 again to reseat bulkhead properly. If issues persist, please contact CCH2O Tech Department for more assistance.
Boneless Cut Chart

System Size: 8 Gallon

<table>
<thead>
<tr>
<th>QTY. NEEDED</th>
<th>PLANT CENTERS</th>
<th>DELIVERY MANIFOLD</th>
<th>RETURN MANIFOLD</th>
<th>JOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>STANDARD - 2 ROW</td>
<td>STANDARD - 2 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVOLUTION - 3 ROW</td>
<td>EVOLUTION - 3 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOUBLE BARREL - 4 ROW</td>
<td>DOUBLE BARREL - 4 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>18"</td>
<td>25"</td>
<td>11.75"</td>
</tr>
<tr>
<td></td>
<td>7.25"</td>
<td>17"</td>
<td>21.5"</td>
<td>25.5"</td>
</tr>
<tr>
<td></td>
<td>12.5"</td>
<td>8"</td>
<td>19"</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

System Size: 13 Gallon

<table>
<thead>
<tr>
<th>QTY. NEEDED</th>
<th>PLANT CENTERS</th>
<th>DELIVERY MANIFOLD</th>
<th>RETURN MANIFOLD</th>
<th>JOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>STANDARD - 2 ROW</td>
<td>STANDARD - 2 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVOLUTION - 3 ROW</td>
<td>EVOLUTION - 3 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOUBLE BARREL - 4 ROW</td>
<td>DOUBLE BARREL - 4 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>30"</td>
<td>40"</td>
<td>50"</td>
</tr>
<tr>
<td></td>
<td>10.75"</td>
<td>25.5"</td>
<td>31"</td>
<td>20"</td>
</tr>
<tr>
<td></td>
<td>13.25"</td>
<td>31"</td>
<td>36"</td>
<td>46"</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

System Size: 35 Gallon

<table>
<thead>
<tr>
<th>QTY. NEEDED</th>
<th>PLANT CENTERS</th>
<th>DELIVERY MANIFOLD</th>
<th>RETURN MANIFOLD</th>
<th>JOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>STANDARD - 2 ROW</td>
<td>STANDARD - 2 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EVOLUTION - 3 ROW</td>
<td>EVOLUTION - 3 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOUBLE BARREL - 4 ROW</td>
<td>DOUBLE BARREL - 4 ROW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>40"</td>
<td>45"</td>
<td>50"</td>
</tr>
<tr>
<td></td>
<td>16"</td>
<td>41"</td>
<td>46"</td>
<td>26"</td>
</tr>
<tr>
<td></td>
<td>17.25"</td>
<td>19.75"</td>
<td>22.25"</td>
<td>27.25"</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

***All PVC cut lengths assume one plant per module. Dimensions are as accurate as possible and may be off 0.5” +/-.
Environmental Considerations: For best results, all aspects of the grow space should be optimized including: day and night temperatures, humidity, light levels, CO2 and air movement. Refer to the CCH2O General Recommendations chart above for specific environmental parameters.

Nutrient Solution Temperature: Maintain nutrient solution temperatures between 66° - 72°. This will allow for the highest levels of dissolved oxygen, discourage proliferation of harmful bacteria and ensure explosive root growth.

Top-Off Reservoir: Use a top-off reservoir to maintain consistent water levels in your hydroponic system. The top-off can be used for nutrient/pH steering or rapid nutrient change outs.

Adjusting pH & EC/ppm: Use one of the following methods for pH and EC/ppm adjustments. Stay within our recommended pH and EC/ppm ranges for each week of veg and bloom.

Method 1 - Top-Off Reservoir: Using a top-off reservoir makes it easy to follow weekly feeding schedules. The top-off reservoir should have a similar nutrient concentration than what’s in your hydroponic system or the following weeks nutrient schedule. For best results pH and EC/ppm adjustments should be done through the top-off reservoir.

Method 2 - Nutrient Doser: When implementing nutrient dosing or fertigation equipment be sure to consult your equipment manufacturer for the proper concentration ratios.

Method 3 - Add-Back: Adding concentrated pH adjusters or nutrients directly to your hydroponic system may result in extreme plant/root shock. Dilute desired add-back concentrates into a volume of water before slowly adding into your hydroponic system. Use a venturi, such as a Mazzei injector, to easily introduce add-backs to your hydroponic system. For more information on this method reach out to tech@cch2o.com

*UC ROOTS can be added directly to the your hydroponic system at recommended rates, it has no negative impact on plants/roots.

Nutrient Change Outs: Full nutrient change outs are beneficial every 14-21 days. If pH levels become unstable or nutrient levels start to rise this may be a good indication to do a full or partial nutrient change out. When feeding aggressively, nutrient change outs every 7-10 days may be necessary.
FAQ’S

1. What are the most common mistakes made in water culture?
 a. Running nutrient strength too high. This can inhibit water uptake and contribute to metabolic stagnation and subsequent plant stress.
 b. Using incompatible inputs in solution causing convolution of the water chemistry. Avoiding organic, low solubility inputs is strongly recommended.
 c. Micro managing pH. Adjusting pH too frequently can lead to nutrient solution instability and issues.

2. Are Carbohydrates/Sweeteners, Enzymes and Beneficial Bacteria recommended in the Under Current?
 a. No. These tend to create bio-films and de-stabilize water chemistry.

3. Should the Air Pump and water Pump run 24/7?
 a. Yes

4. What is the approximate volume of solution in each module during standard operation?
 a. 8 gallon – approx. 6 gallons
 b. 13 gallon – approx. 10 gallons
 c. 35 gallon – approx. 30 gallons

5. How do I calculate my total system volume?
 a. Multiple total number of modules plus 1 (for Epicenter) multiplied by the approximate volume per module. Take this volume and add 10% to account for solution in joints and manifolds.
 b. Example: UCDB16XL -
 i. 17 x 6 gallons per module = 102 gallons
 ii. 102 + 10% = 112 gallons

6. Where should I set my solution level?
 a. Initial Transplant: See diagram on pg. 31.
 i. Bare Root: Top of root crown.
 ii. Rockwool/Cube: Just below base of RW/cube 1/4-1/2” below NET POT planting deck.

7. Can I integrate a nutrient auto dosing system?
 a. Yes. Visit the Automation section under PRODUCTS on www.cch2o.com for more information.

8. What is a top-off reservoir and why do I need one?
 a. A top-off reservoir is used to maintain consistent system volume and water chemistry. Top-off reservoir will supply solution via gravity to the float valve in Epicenter (control module).

9. What should be in my top-off reservoir?
 a. When operated properly, top off should be balanced the same or slightly higher as the solution in the system.

10. Does a top-off reservoir help maintain water chemistry (pH/EC) stability?
 a. Yes. Any fluctuations in pH/EC can have a negative effect on plant health.

11. How do I adjust pH?
 a. CAUTION: Do NOT add pH concentrate directly to Epicenter (control module).
 b. If the pH is between 5.5-6.5 no adjustment is necessary.
 c. Use one of the 3 methods listed on Page 35 under Adjusting pH & EC/ppm

12. What solution temperatures are optimal?
 a. We recommend maintaining a water temperature between 65-68 degrees F.

13. Do I need a water chiller?
 a. Yes.

14. What is the best nutrient for the Under Current?
 a. Pure mineral-salt based nutrients are the most compatible with actively aerated water culture. Cultured Solutions is specifically formulated for high performance hydroponics such as the Under Current system.

15. What is the recommended nutrient strength for the Under Current?
 a. Start Veg: 100 ppm / 0.2 EC **Based on ppm 500 scale
 b. Start Bloom: 450 ppm / 0.9 EC **Based on ppm 500 scale
 c. Use Cultured Solutions feeding chart on bottle or online at www.cch2o.com

16. Should I change my nutrient strength each week?
 a. For best results change the solution every 7-10 days.
 b. Follow manufacture’s nutrient schedule as recommended.
17. How do you veg for the system?
 a. **Under Current system (8 gallon):** Bare root or cube (rock wool, oasis, etc) propagated plants can be placed directly into our CCH2O Net Pot and placed directly into a Under Current system for optimum growth. This technique is perfect if subsequently transplanting into a larger Under Current system (13 gallon or 35 gallon PRO) at a wider plant spacing.
 i. In this case the entire CCH2O Lid (with Net Pot) can be picked up and moved directly to another Under Current growth module for flowering. This method is ideal for avoiding unnecessary root damage during transplant into bloom.
 b. **Ebb and Flow Table (Periodic Flood):** Bare root or cube (rock wool, oasis, etc) propagated plants can be placed directly into our CCH2O Net Pot or 4”/6” rock wool cubes and placed in a typical tray. Some natural root pruning may occur as the roots grow through the net pot due to the intermittent watering cycle.
 c. **Ebb and Flow Table (Continuous Flood):** Bare root or cube (rock wool, oasis, etc) propagated plants can be placed directly into our CCH2O Net Pot or 4”/6” rock wool cubes and placed in a typical tray. Adding air diffuser to the tray will create a water culture environment. This will simulate root growth similar to the Under Current system and prepare the plants for a fairly seamless transition.
 d. **Drip:** Bare root or cube (rock wool, oasis, etc) propagated plants can be placed directly into our CCH2O Net Pot or 4”/6” rock wool cubes. A drip system with emitters in each net pot/cube can be placed on a bench or in a flood tray. Some natural root pruning may occur as the roots grow through the RW cube.

18. What grow mediums are recommended for use in the Under Current?
 a. Any non-wicking inert grow media tends to work best. Expanded clay pellets and growstones are some of the most popular.
 b. When using a wicking media like rockwool be sure to adjust solution level to ¼” below contact with the R.W.

19. How frequently should I change my nutrients?
 a. Change outs are recommended every 7-10 days, or if pH becomes de-stabilized (drifts more than 0.3 per day).

20. Do I have to empty out the entire system to do a nutrient change-out?
 a. No.

21. Do I need to flush my system between change-outs?
 a. No, assuming only compatible inputs are being used a simple drain and refill is sufficient.

22. Do I need to disassemble to clean the Under Current?
 a. No.

23. What do I use to clean the system? Mix Ratio of Cleaning Agent?
 a. Physan 20, follow manufacturer’s directions.

24. Should I use Ca/Mg in the Under Current?
 a. When using Reverse Osmosis (RO) or De-Ionized (DI) water Calcium/Magnesium is recommended. See Cultured Solutions feeding chart.

25. Is it possible to over-aerate my Under Current?
 a. Yes, we recommend aeration levels stay between 0.75-1.5 liters per minute/per gallon. Exceeding these levels may cause mineral precipitation and nutrient de-stabilization.

26. Do I need to include the initial PPM of my source-water when calculating nutrient levels?
 a. Yes. Adjust accordingly.

27. Do I need a Bulkhead Filter for each growth module?
 a. No.

28. Do I need to flush my system before harvest?
 a. Yes, we recommend a 2-3 days flush using UC Roots at 5-7mL per gallon.

29. Is there an option for custom system spacing?
 a. Yes, all systems are available in a “Boneless” configuration without straight sections of pipe, allowing you to customize your plant centers.

30. Does a “Boneless” system include instructions on how to cut/couple pipe?
 a. Yes, each “Boneless” kit includes a Boneless cut chart and recommendations for gluing and assembly.

31. What should I do if I make a mistake?
 a. Observations and slight adjustments are the best way to dial your system in, when in doubt give CCH2O a call.

32. What makes the Under Current a more efficient hydroponic method?
 a. Less frequent nutrient change outs, lower nutrient usage rates, less pH fluctuations (less pH adjusters needed) and the conservation of precious H2O.

33. What makes the Under Current more productive compared to other hydroponic systems?
 a. When a water culture system is operated properly, plants benefit from an increased uptake of water and minerals in solution as well sustained cell turgidity. Given the favorable CEC of water, a plants nutrient uptake efficiency in water culture is very high, resulting in superior results.
Current Culture H2O Limited 2-Year Warranty

This limited warranty applies only to full systems manufactured at Current Culture H2O in Fresno, CA.

Warranty Includes
- All individual components manufactured by Current Culture H2O come standard with a two year limited warranty.
- All Air & Water pumps are covered by their specific manufacturer’s warranty. Manufacturer instructions and warranty information booklets are provided with each pump. If any issues with these units covered within their individual warranties should occur, please contact the manufacturer for repair or replacement.

Warranty Excludes
- This limited warranty excludes any components considered to be expendable (i.e. hoses, diffusers, net pots, etc.). These items should be replaced periodically to ensure proper system functionality.

Warranty Returns & RMA
Current Culture H2O will replace the product, repair the product or send a replacement part or issue a refund (at our option) when the consumer provides a proof of purchase (either a bill of sale, receipted invoice, or other proof that the product is within the warranty period), along with a full description of the defect, to:
Current Culture H2O, 4333 S. Minnewawa Ave #101, Fresno, CA 93725, (559)266-4769, info@cch2o.com

Current Culture H2O reserves the right to request photographic proof of product defect, and request that the defective product in question be shipped to Current Culture H2O to verify the defect or to aid in quality control efforts.

All warranties must be preceded by an authorized RMA form. If a replacement is issued, Current Culture H2O does not cover the cost of shipping replacement items. Customer will be notified of shipping charges for approval and payment information prior to issuing replacement items.

Legal Info
Misuse, or use other than for horticultural purposes is not covered by the limited warranty. In addition, damage caused by: insects, animals or rodents, use of force, incorrect handling, inappropriate use, abuse, neglect, accidents, impact from foreign objects, vandalism, pollutants, set-up on an un-level foundation, alteration, painting, fading, assembly not in accordance with the System Assembly Instructions, or damage caused as a result of storage above the capacity limits of the Product, are not covered by this limited warranty.

This limited warranty does not apply to damage resulting from “acts of nature” such as, but not limited to: wind, hail, storm, tornado, hurricane, heavy snow, ice, blizzard, extreme heat, freezing, flood, fire effects.

This warranty is void if structural parts and/or components not supplied by Current Culture H2O are used.

This warranty does not apply to “Normal Weathering”. “Normal Weathering” is defined as exposure to sunlight and extremes of weather and atmosphere, which will cause any colored surface to gradually fade, chalk, or accumulate dirt or stains.

CURRENT CULTURE H2O MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, CONCERNING THE PRODUCT OR THE MERCHANTABILITY OR FITNESS THEREOF FOR ANY PURPOSE. IN NO EVENT SHALL CURRENT CULTURE H2O BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES. Legal rights vary from state to state, so the above limitations may not apply to you if precluded by local law.

Determination of coverage under this warranty shall be made at the sole discretion of Current Culture H2O.
This system operates by storing and circulating water.

Water is heavy. Water is wet. Water freezes. Water and electricity could lead to electrocution.

It is the responsibility of the user of this system to make sure the surface upon which the system is installed is capable of supporting SUBSTANTIAL weight and is waterproof, and that all electrical components are install so that they will not get wet.

Current Culture H2O will NOT be responsible for any damage caused by improper installation or consequential damage to person or property caused by the use of this product even if it is determined to be defective.

Please take these warnings into consideration when planning your installation.

Copyright © 2016 Current Culture H2O. All Rights Reserved.